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Instead of That, Say This
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Juan, a child with a mathematics 
disability, is learning about addition 
and subtraction of fractions. Juan’s 
special education teacher, Mrs. Miller, 
has tried to simplify language about 
fractions to make fractions easier for 
Juan. During instruction, she refers to 
the “top number” and “bottom 
number.” At the end of chapter test, 
Juan reads the problem: “What’s the 
least common denominator of ½ and 
2/5?” Juan answers, “1.”

Upon returning his test, Mrs. Miller 
asks Juan how he arrived at his 
answer, and learns that because he 
didn’t know what denominator 
meant, he used the word least to 
choose the number that was “least.” 
Mrs. Miller explains that denominator 
is the formal term for the “bottom 
number.” Juan exclaims, “I know how 
to find the least common bottom 
number!”

Mrs. Miller did not intend to make 
mathematics confusing for Juan; she 
tried to make mathematics easier. But, 
in simplifying her language without 
connecting this informal language to 
formal mathematics language, she did 
Juan a disservice.

Children with disabilities, like Juan, 
perform lower in mathematics than 
their peers without disabilities, and 
this gap widens from ages 7 to 13 
(Wei, Lenz, & Blackorby, 2013). Of 
even greater concern is that fifth-grade 
children with mathematics disabilities 
continue to perform in the bottom 
quartile of their grade in high school 
(Shalev, Manor, & Gross-Tsur, 2005). 
This trend leads educators to ask the 
question: With multiple tiers of 
instruction, why do low-performing 
children in the elementary grades 
continue to struggle with 
mathematics?

One influence contributing to this 
trend may be the imprecise use of 
mathematics language. Educators may 
not interpret mathematics as a second 
(or third) language for children, when, 
in fact, all children are mathematical-
language learners (Barrow, 2014). The 
numerals, symbols, and terms that 
explain mathematics concepts and 
procedures are plentiful and complex. 

The language of mathematics, 
especially vocabulary terms, is 
necessary for understanding 
mathematics in oral and written forms 
(Ernst-Slavit & Mason, 2011; Riccomini, 
Smith, Hughes, & Fries, 2015). 
Mathematics vocabulary is often 
difficult for children because many 
terms have meanings in general 
English and meanings specific to 
mathematics (Rubenstein & Thompson, 
2002; Schleppegrell, 2007). For 
example, factor could mean a 
contributing element (e.g., one factor 
contributing to mathematics difficulties 
is vocabulary that requires language 
code switching) or two or more 
numbers multiplied together to 
produce a product (10 and 12 are 
factors of 120). Even within the 
mathematical definition of factor, 
produce and product may have multiple 
meanings.

Language plays an important role in 
learning mathematics. In Juan’s case, 
his special education teacher was 
trying to make fractions easier for Juan 
to understand, but because of the 
simplified language Mrs. Miller used in 
instruction, Juan did not understand 
grade-level questions presented with 
mathematical vocabulary. Just as there 

are rules in mathematics that expire in 
later grade levels (e.g., multiplication 
always results in a bigger number; 
Karp, Bush, & Dougherty, 2014), there 
are mathematics terms (e.g., bottom 
number) that help children only 
temporarily. One way for educators to 
improve Juan’s mathematics 
performance is by developing an 
understanding of and sensitivity to 
mathematics language that facilitates 
conceptual and procedural 
understanding. Children should learn 
mathematics skills in accurate contexts 
that provide a solid foundation on 
which to build more complex skills in 
later grades. Therefore, teaching 
language that is mathematically correct 
and holds true across grade levels can 
help children generalize mathematics 

across concepts (Townsend, Filippini, 
Collins, & Biancarosa, 2012).

Educators need to plan for using clear 
and concise language, which includes 
identifying inaccurate terms, preferred 
language, and why changes in language 
matter. For example, by the end of first 
grade, there are over 105 novel 
mathematics vocabulary terms that 
children are expected to understand and 
apply (Powell & Nelson, 2016); by fifth 
grade, the number is above 325 (Powell, 
Driver, & Roberts, 2016). With children 
expected to know hundreds of 
mathematics vocabulary terms and the 
meaning of those terms, exposure to 
clear, concise, and uniformly used 
language is a must (Monroe & Orme, 
2002). Specificity with language is an 
important consideration for special 
educators because children who 
experience mathematics difficulty often 
also experience reading difficulty (Hart, 
Petrill, Thompson, & Plomin, 2009). As 
the majority of mathematics high-stakes 
items involve reading and interpreting 
mathematics vocabulary terms, special 
educators must provide explicit 
instruction related to mathematics 
vocabulary.

The purpose of this article is to 
provide an overview of mathematics 

language that supports accurate and 
conceptual understanding of 
mathematics. We discuss five domain 
areas within the elementary Common 
Core State Standards for Mathematics 
(CCSS; National Governors Association 
Center for Best Practices & Council of 
Chief State School Officers, 2010), and 
not only explain why it is important to 
use clear and concise mathematics 
language but also which terms to use 
in working with students.

Counting and Cardinality

A solid foundation for success in 
mathematics begins with 
understanding that numbers have 
given values. Correct counting requires 
stable order (i.e., a sequence of 
counting words), one-to-one 

Language plays an important role in learning 
mathematics.
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correspondence, and cardinality. 
Cardinality refers to the understanding 
that the last number word of a 
counting sequence (e.g., “one, two, 
three, four, five” for a set of five toy 
cars) represents the quantity in the set. 
Given that these skills provide the 
foundation for future success in 
calculation (e.g., addition; Noël, 2009), 
it is not surprising that counting and 
cardinality constitute almost one third 
of the kindergarten CCSS. It is 
important, however, that children are 
exposed to counting and cardinality 
language in a way that allows for 
integration of higher-level, complex 
mathematical understanding. In terms 
of language, educators must be mindful 
of how they talk about numbers within 
the counting sequence (see Figure 1).

Our language suggestions pertain to 
the counting sequence. Purposeful 
language may promote students to 
extend mathematics understanding as 
they learn new concepts that 
complement the continuum of learning. 
For example, although teaching the 
concept of negative integers in 
kindergarten is not developmentally 
appropriate, teachers can present 
counting and cardinality using a 
number line that extends in both 
directions, requiring children to locate 1 

(or another number) when counting. 
Teachers should not indicate that any 
number is “first” when counting or 
looking at a number line because this 
indicates there are no numbers less than 
the “first” number. Instead, refer to 
counting as starting at a specified 
number. In a similar manner, educators 
should not indicate an end to the 
counting sequence (e.g., 10). Many 
children have difficulty with the teen 
numbers and beyond (Geary, 2000), and 
as too many mathematics trade books 
about counting finish with 10 (Powell & 
Nurnberger-Haag, 2015), it is important 
to use language that supports numeral 
and quantity understanding beyond 10. 
Two problematic examples pertaining to 
10 are songs with lyrics “7, 8, 9, and the 
last one’s 10” or “8, 9, and 10.” Using 
accurate language that promotes 
counting as a continuum on a number 
line provides children with an accurate 
understanding of numbers so that they 
can flexibly incorporate new, complex 
understanding when it is 
developmentally appropriate.

Number and Operations in 
Base 10

As children develop counting and 
cardinality skills, they also acquire an 

understanding of number and 
operations in base 10. This begins with 
composition and decomposition of two-
digit numbers. For example, the 
number 15 can be represented as one 
bundle of 10 and five 1s or as fifteen 1s. 
Children also learn to compare two-
digit numbers using symbols and words 
(i.e., >, =, and <). Not only do 
children need to develop a flexible 
understanding of numbers, but they 
need a solid foundation in mathematics 
language to discuss numbers. For 
example, children need to know the 
following terms in order to compare 
numbers: greater than, less than, place 
value, digit, more, and fewer. Children’s 
understanding of place value builds in 
complexity with each grade, and so do 
the language demands. By fifth grade, 
children must understand and describe 
the relationship between each place 
value (e.g., a digit in the hundreds 
place represents 10 times as much as 
the digit in the tens place), compare 
decimals to the thousandths, and 
multiply or divide whole numbers and 
decimals using place-value strategies. 
Unfortunately, many children struggle 
to develop proficiency in this domain 
(DeWolf, Grounds, Bassok, & Holyoak, 
2014), and deficiency in number and 
base-10 operations greatly affects 

Figure 1. Counting and Cardinality

Instead of . . . Say . . .
1 is the first number

Problem: 1 is not the first number. The number 
line extends infinitely in both directions. Referring 
to 1 as “the first number” causes confusion over 
understanding zero, negative integers, and 
rational numbers. 

Let’s start counting with 1 or 0

Solution: This accurately represents a conceptual 
understanding of counting and number sense.  
Numbers do not start at a particular place, but  
rather you choose to begin counting at 0, 1, or  
another integer.

And the last one is 10

Problem: This suggests that 10 is the final or 
highest number. As many children struggle with 
teen numbers, it is necessary to give opportunities 
to count beyond 10.

...8, 9, 10. We’ll stop counting there, but we could  

count more

Solution: Providing an indication that 10 is a  
temporary stopping point helps children understand 
there are numbers beyond 10.

...7, 8, 9, and 10

Problem: The use of  “and” suggests that  
10 is the final or highest number.

...7, 8, 9, 10...

Solution: In mathematics, only use “and” when  
referring to the decimal point.
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children’s performance in other 
domains of mathematics.

When teaching this domain, 
incorporate language that supports 
place-value understanding and 
develops flexibility in mathematical 
thinking. Although it may seem easier 
to teach children chants, tricks, or rules 
for solving place value and 
computation problems, these 
approaches often use inaccurate 
language that does not support 
conceptual understanding. It is 
extremely important that educators 
model and maintain accurate language 
that facilitates conceptual 
understanding of place value.

It is also necessary to tie instruction to 
place-value understanding and 
developing flexibility in mathematical 

thinking (see Figure 2). As mentioned in 
the section Counting and Cardinality, 
children often have difficulty with 
number names beyond 10 (Browning & 
Beauford, 2011). Therefore, educators 
should practice number names (e.g., 324 
as three hundred twenty-four) and discuss 
digits and their value (e.g., “The 2 is in 
the tens place, so 2 means two sets of 
10”). Educators should explain that each 
numeral within a number represents the 
value of the digit. It should also be noted 
that there are different ways of referring 
to the base-10 system (e.g., ones, tens, 
and hundreds; singles, sticks, and sheets; 
ones, rods, and flats). When deciding 
which mathematical terms to use, it can 
be helpful to refer to the Common Core 
language for guidance; however, the 
terms used should be consistent across 
the grades and mathematical in nature 
(i.e., not singles, sticks, and sheets). 
When educators ask children to represent 
numbers by place value, children 
compose or decompose rather than make 
or break apart.

Educators should also be mindful of 
language about comparison and 

calculation. For comparison, educators 
should use accurate language, such as 
greater than or less than. These terms 
replace the common description that 
“the alligator eats the bigger number.” 
In this example, no conceptual 
understanding is established with eats. 
Also, numbers are not bigger but 
greater or more. The term bigger can 
cause difficulty years later with 
addition and subtraction of positive 
and negative integers. The same goes 
for the term smaller. With calculations 
based on the four operations (i.e., 
addition, subtraction, multiplication, 
division), educators must be mindful of 
the language used to explain the 
operator symbols (+, −, ×, ÷), 
inequality symbols (<, >), and 
equivalence symbols (=, ≠). The plus 

(+) sign means to “add,” but it does 
not signal “plussing.” The plus sign 
may be explained as putting together, 
but this definition is short-lived as 
children are encouraged to start with a 
set and add on to the set (Fuchs et al., 
2009). Another symbol that causes 
difficulty in later grades is the equal 
sign. Educators could use language, 
such as the same as or a balance, to 
help children understand the equal 
sign as a balance between two sides of 
an equation (e.g., Powell, Driver, & 
Julian, 2015). Educators should avoid 
saying the equal sign means “write 
your answer” or “compute.” As 
children use symbols to perform 
multidigit computation, educators must 
be aware of using language that 
supports the concept of regrouping 
(e.g., regroup) rather than the 
notational procedure (e.g., borrow).

Numbers and Operations With 
Rational Numbers

Numbers and operations with rational 
numbers address mathematics 

involving fractions, decimals, and 
percentages. Rational numbers tend to 
be one of the most problematic areas 
for children, and difficulty with rational 
numbers affects later mathematics 
learning (Hoffer, Venkataraman, 
Hedberg, & Shagle, 2007). Any 
difficulty with rational numbers is 
concerning given research linking 
rational number achievement to later 
success in mathematics (e.g., Bailey, 
Hoard, Nugent, & Geary, 2012). It is 
not alarming, however, when we 
consider how properties of rational 
numbers may differ from properties of 
whole numbers. Language terms taught 
early about whole numbers may no 
longer apply when working with 
fractions or decimals (see Figure 3).

Many of the language suggestions 
for rational numbers pertain to how 
teachers communicate fractions to 
children using words or images. For 
example, a fraction is a unique number 
whose magnitude or value can be 
identified on a number line. A fraction 
comprises numerals (e.g., 3 and 8) that 
create a single number (e.g., 3/8). The 
denominator of a fraction represents 
the equal parts of the relative whole 
(i.e., whole, group, set, measurement), 
not just parts. Children commonly 
divide a rectangle into eight unequal 
parts and shade three of the parts to 
represent 3/8 without an understanding 
that the whole must be divided into 
equal parts. If an educator merely 
added equal to parts every time the 
denominator is mentioned in 
instruction, children might develop a 
better understanding of wholes and 
parts. Educators must also provide 
exposure to fraction concepts that do 
not fit the meaning of equal parts in a 
whole. For example, a fraction can be 
parts of a set or a position on a number 
line.

Educators should use the technical 
terms numerator and denominator 
under most circumstances and relegate 
top- and bottom-number language to 
descriptions of the position of the 
numerator and denominator. Top 
number and bottom number are strictly 
terms that describe the position of the 
numbers in the numerator and 
denominator, and fractions are not 

Educators may not interpret mathematics as a 
second (or third) language for children, when, in 
fact, all children are mathematical language 
learners.

 at UNIV OF OREGON on November 3, 2016tcx.sagepub.comDownloaded from 

http://tcx.sagepub.com/


TEACHING ExcEptional childrEn | SEptEmbEr/octobEr 2016 11

Figure 2. Numbers and Operations in Base 10

The alligator eats the bigger number

Problem: Children do not learn how to read math 
expressions from left to right or understand the 
meaning of the greater-than (>) and less-than (<) 
symbols.

Instead of . . . Say . . .

Less than or greater than

Solution: Children learn how to read and write the 
inequality symbols and read equations correctly from left 
to right. Children also learn that < and > are two distinct 
symbols and not one symbol that switches back and 
forth.Bigger number and smaller  

number

Problem: This is not mathematical language 
and it does not transfer to positive and negative 
integers.

Number that is greater and number  
that is less

Solution: These terms are mathematically accurate and 
reflect the language in mathematics standards.

What number is in the tens place?

Problem: This does not help the child understand 
place value. A number refers to the entire amount. 
For example, 243 is a number. The 4 in the tens place 
value is not a number, but rather a digit.

What digit is in the tens place?
What is the value of the digit 4 in the tens place?

Solution: This reinforces the conceptual  
understanding of place value and emphasizes that  
4 is part of the number 243 with a value of 40. 

Five hundred and twenty-nine

Problem: The word “and” should only be used 
to represent the decimal point (e.g., 325 is “3 
and twenty-five hundredths”) or fractions (e.g., 
3 ¼ is “3 and one-fourth”).

Five hundred twenty-nine

Solution: This is mathematically correct.

When adding, your answer is  
always bigger.
When subtracting, your answer is  
always smaller.

Problem: This is not always true. When working 
with 0, rational numbers, or negative numbers, 
adding will not always produce a greater number 
and subtracting will not always produce a number 
that is less.

Ask children to predict and reason

Solution: Do not say rules that expire in subsequent grade 
levels because it leads to an erroneous understanding of 
addition and subtraction. 

Carry or borrow

Problem: This terminology is procedural.

Regroup or trade or exchange

Solution: This reinforces the conceptual understanding of 
regrouping ones into tens, tens into hundreds, and so on, 
or ungrouping hundreds into tens, tens into ones, and so 
on.

Equals

Problem: This term is often used to indicate that 
children write an answer. 

the same as

Solution: This reinforces the equal sign as a symbol that 
indicates the quantities on both sides need to be the 
same. 

Makes up or break apart

Problem: These informal terms are procedural 
and not the terms used in textbooks or on high-
stakes assessments. 

Compose and decompose

Solution: Use the formal terms to describe composing or 
decomposing a number (e.g., “24 is composed of 2 tens 
and 4 ones”).
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Figure 3. Numbers and Operations With Rational Numbers

Numbers in the fraction

Problem: Language suggests that each part of a 
fraction (i.e., numerator, denominator) is a separate 
and independent number, instead of digits (or series 
of digits) that comprise a fraction.

Instead of . . . Say . . .
This fraction is a number

Solution: A fraction is a number in itself and has a 
magnitude on a number line. A fraction is not two 
separate numbers.

Top number and bottom number

Problem: This suggests that the numerator and 
denominator are separate and independent 
numbers.

Numerator and denominator

Solution: A fraction is a number with a specific 
magnitude that can be represented on a number line. 
Although a fraction may have different parts, these 
parts do not work in isolation but rather contribute to 
one number: the fraction.

2 over 3

Problem: This communicates the location of the  
digits but not the actual number or magnitude.

Two-thirds

Solution: This is accurate and communicates the 
magnitude of the number.

Line

Problem: Calling the fraction bar a “line” is inexact 
vocabulary.

Fraction bar or slash

Solution: The fraction bar or slash plays an 
important role in communicating the divisional 
relationship between the numerator and 
denominator.

Reduce

Problem: This term (as in “reduce to the  
lowest term”) suggests the result is less  
in quantity. 

Rename or find an equivalent fraction

Solution: The quantity represented by the 
magnitude of fraction does not change. The only 
change is with the digits used to communicate that 
magnitude.

Three point four

Problem: Reading a decimal as “point” does not 
support the conceptual understanding of place value 
of the magnitude of the decimal.

Three and four tenths

Solution: This reinforces place value and supports 
understanding of magnitudes, values, and when to 
use each symbol. 

Move the decimal point over

Problem: This language communicates what is 
superficially occurring, the action. The language  
does not promote conceptual understanding when 
multiplying or dividing by tens.

Demonstrate process within Base 10

Solution: Helps with understanding the process 
of multiplying by tens, hundreds, and so on.

Three out of four

Problem: When talking about ratios, this language 
is incorrect because it does not communicate the 
ratio of one number to another, but rather one 
number to the whole.

Three to four

Solution: Although a minor change in language, 
the meaning is very different and communicates 
the ratio of one number to another.
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always presented with a fraction bar 
(e.g., 1/8), which negates these terms. 
In a similar way, describing a fraction 
as a number over a number does not 
help children understand that a fraction 
is a single quantity. Students’ 
misunderstanding that fractions consist 
of two separate numbers separated by 
a line may lead to errors such as 
adding across the top number and 
adding across the bottom number 
when adding fractions. As children 
learn to reduce a fraction to lowest 
terms, some children believe this 
means the value of the fraction 
changes; a better choice is to describe 
determining an equivalent fraction in 
simplest form, which eliminates the 
need to use the term reduce.

Decimals communicate similar 
information as fractions but are based 
on powers of 10. As such, the language 
used to read a decimal can support the 
relationship. For example, reading 5.4 
as “five and four tenths” naturally 
connects fractions to decimals by 
sharing how fractions can be written as 
decimals. Casual language, such as 
saying point (e.g., “five point four”) as 
the placeholder for the decimal point, 
spills over to discussion on how 
decimals are manipulated (e.g., “move 
the decimal point over”) instead of 
building conceptual understanding of 
the base-10 system. Another language 
consideration is introduced with out of 
and ratios. Many educators use out of 
to describe the parts of a whole (e.g., 
“three out of four” for 3/4), but with 
ratios, out of does not convey the same 
meaning (e.g., 3:2 is not “three out of 
two” but “three to two”).

Geometry

Children typically start school with a 
basic understanding of shapes 
(Clements & Sarama, 2000). Within 
the CCSS, geometry appears as a 
domain area at kindergarten and all 
subsequent grades through eighth 
grade. Much of geometry in the 
elementary grades focuses on two-
dimensional (2-D) and three-
dimensional (3-D) shapes. In the late 
elementary grades, children are 
expected to understand lines and 

angles and how these relate to 
properties of shapes and coordinate 
planes. Children with mathematics 
difficulty struggle with geometry 
concepts through high school 
(Dobbins, Gagnon, & Ulrich, 2014); 
therefore, it is necessary to provide a 
consistent and strong geometry 
background to children across grade 
levels. Often, general vocabulary is 
used to describe geometric concepts, 
yet children are expected to interpret 
formal geometric vocabulary. 
Educators should show the connection 
between informal and formal terms 
(see Figure 4).

Many of the issues around language 
with geometry pertain to preciseness of 
vocabulary. At the earliest grades, 
educators may use informal names for 
shapes, like ball for circle, when a ball 
is actually a sphere. Children must 
understand the term circle and use it 
across grade levels, so introducing this 
term early and applying it consistently 
is necessary. The same is true for 
square and rectangle; a square is a 
rectangle, but a rectangle is not always 
a square. Mathematical language 
accuracy is also important for 
understanding that the space between 
intersecting lines is an angle and not a 
corner. Children do not measure 
corners, but they do measure angles.

In the late elementary grades, 
language used to describe 2-D shapes 

can change for 3-D shapes, so 
educators must explicitly help children 
identify these changes and connect the 
concepts. A cube may be described as 
having six sides, but these sides are 
faces. The sides are actually edges, and 
edges meet at vertices, not points. 
When calculating the volume, two of 
the faces of the cube are bases. 
Another language concern is around 
the term same. An educator may use 
same to describe figures that are 
similar, congruent, and symmetrical. 
Using same may be helpful in the short 
term, but as children are asked to find 

similar and congruent shapes, same 
does not help with this task.

As children learn transformations in 
the early elementary grades, educators 
often describe these as flips, slides, and 
turns. Although these terms describe 
the action of a transformation, children 
in the later elementary and middle 
school grades must be familiar with the 
formal terms of reflection, translation, 
and rotation. Specificity with the term 
is necessary for children to have gained 
adequate exposure to the term for 
practice within textbooks and on 
high-stakes assessments. In a similar 
manner, shapes do not shrink or 
stretch. Instead, these are dilations of a 
shape.

Measurement and Data

The domain area of measurement and 
data is mentioned specifically in the 
CCSS across kindergarten through fifth 
grade. At kindergarten, children are 
expected to describe length and weight 
and compare objects with measureable 
attributes. Measurement of objects 
continues across the elementary grades 
with a focus on standard and 
nonstandard units of measurement. In 
first grade, children start learning about 
telling time, and in second grade are 
introduced to money. Starting in third 
grade, measurement becomes 
intertwined with geometry as children 

measure perimeter and area of shapes, 
and continue with measurement of 
angles in fourth grade and 
measurement of volume in fifth grade. 
Representing data is a theme across the 
elementary grade levels. Figure 5 
highlights important components of 
language when educators teach 
measurement and data concepts.

Similar to the geometry domain area, 
many of the language issues with 
measurement relate to being precise 
with language and not using certain 
terms interchangeably. When educators 
introduce telling time, the clock hands 

One way to support children and promote 
progressive understanding of mathematics is to 
use precise and accurate language.
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Figure 4. Geometry

Box or ball

Problem: With early descriptions of shapes, 
children use terms that relate to real-life objects. 
This is permissible, but formal language should 
also be reinforced.

Instead of . . . Say . . .
Square/rectangle or circle

Solution: Use the formal language of shapes to confirm 
informal language. 

Square (for any rectangular shape)

Problem: A square has four equal, straight sides, 
and four right angles. A square is a rectangle, but a 
rectangle is not necessarily a square. 

Rectangle

Solution: This helps children distinguish between square 
and rectangle terminology.

Corner

Problem: This general vocabulary term is not 
mathematically accurate.

Angle

Solution: Reinforce that an angle is the space between 
two intersecting lines. 

Side or angle (to describe 3D shapes)
Problem: A 2-D shape uses straight sides, and the  
sides meet to form angles. This is not true for  
3-D shapes.

Edge, face, or vertex/vertices

Solution: This reinforces conceptual understanding that 
2-D and 3-D figures are different.

These are the same shape

Problem: This description is too vague.

These shapes are similar

Solution: This description is more accurate and precise; 
shapes are similar when the only difference is in size.

These shapes are the same

Problem: This description is too vague.

These shapes are congruent

Solution: This precisely describes similar shapes  
that are the same size.

These halves are the same

Problem: This statement does not convey  
conceptual meaning.

These are symmetrical

Solution: This statement describes the reflection of a 
shape.

Point (for 3-D figures)

Problem: This term (e.g., “reduce to the lowest 
term”) suggests the result is less in quantity.

Vertex

Solution: This is the endpoint where two or more line 
segments or rays meet. 

Flips, slides, and turns

Problem: Although these terms may help children 
remember the action of a transformation, this 
vocabulary is not used on assessments.

Reflections, translations, and rotations

Solution: These are the correct mathematical terms.

Stretch or shrink

Problem: These terms may help children  
remember the action of a transformation,  
but this vocabulary is not used on assessments.

Dilation

Solution: This is the proper mathematical term.
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Figure 5. Measurement

Long hand and short hand

Problem: These terms describe the length of clock 
hands but not the properties of the hands. 

Instead of . . . Say . . .
Minute hand and hour hand

Solution: These terms help students understand hours 
and minutes.

Less versus fewer

Problem: Not mathematically precise when 
used following grammatical rules.

Less or fewer

Solution: Use “less” when something cannot be 
counted or is singular, and when referring to  
specific numbers with measurement. Use “fewer”  
with objects that can be counted one by one.

Bigger or larger

Problem: These are general vocabulary terms 
and not mathematically accurate.

Greater

Solution: This is the mathematically correct way to  
refer to quantity.

This is 2 cm long

Problem: The use of the word “long” is not 
mathematically correct.

The length of the side is 2 cm

Solution: This statement uses the correct mathematic 
term.

Weight and mass 
(used interchangeably)

Problem: Not mathematically accurate.

Weight or mass

Solution: “Mass” refers to the amount of matter  
in an object, whereas “weight” is the pull of gravity on an 
object.

Capacity and volume 
(used interchangeably)

Problem: Not mathematically accurate.

Capacity or volume

Solution: “Volume” refers to the space of an object. 
“Capacity” refers to liquid measurement.

Chart and graph  
(used interchangeably)

Chart or graph

Solution: A graph presents exact numerical data,  
and a chart presents data in an interpretable manner.Problem: Not accurate.

Picture and pictograph 
(used interchangeably)

Picture or pictograph

Solution: A pictograph is a graph with pictures to 
represent a single or multiple items.

Problem: Not accurate.

Then and than (used interchangeably) Then or than

Solution: For comparison, use “than.”Problem: Not grammatically correct.

should be referred to as the minute 
hand and hour hand so that children 
can understand which hand indicates 
minutes and which indicates hours. As 
children compare quantities, it is 
important to use language correctly. For 

example, “Gabe’s amount is less than 
Marta’s” is grammatically correct over 
“Gabe’s amount is fewer than Marta’s.” 
Numbers should not be described as 
bigger but instead as greater because 
greater is associated with quantity.

For detailed measurement, length 
refers to the measurement of a side or 
edge. Educators may use weight and 
mass interchangeably, yet weight refers 
to how much an object weighs down 
on a surface, whereas mass refers to 
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the matter within an object. On a 
high-stakes assessment, a child may be 
presented with a pictorial 
representation of a liquid measuring 
cup filled with a liquid. The question 
may ask about the capacity of the cup 
and the volume of the liquid. In order 
to understand the task, the child must 
understand that capacity and volume 
have different meanings but similar 
calculations. For interpretation of data, 
educators should be specific with the 
types of data representations (e.g., 
chart, graph, picture, pictograph) so 
children can create appropriate 
representations of data.

Implications for Practice

Taking steps to prevent mathematics 
difficulty for children is important. One 
way to support children and promote 
progressive understanding of 
mathematics is to use precise and 
accurate language embedded within 
teaching strategies that progress and 
generalize across standards and grade 
levels. In this article, we shared several 
examples of ways to adjust common 
errors in mathematics language; 
however, the lists provided do not 
encompass all possible language errors 
and faux pas. Many of our language 
suggestions help to support conceptual 
understanding of mathematical 
concepts, and this is often troublesome 
for children with mathematics 
disabilities. The clear and concise 
mathematics vocabulary we describe 
can be incorporated into existing 
evidence-based practices and 
instruction with ease. For example, 
when using manipulatives to 
demonstrate the concepts of 
multiplication and regrouping, 
educators can focus on describing 
base-10 blocks as hundreds, tens, and 
ones and reinforcing regrouping or 
exchanging. Because clear and concise 
mathematical language sets children up 
for success, educators in subsequent 
grade levels may not have to reteach so 
many misconceptions related to 
language and rules (Karp et al., 2014).

In addition, it is important for 
special educators to consult the 
standards and curricula across grade 

levels to understand language and 
expectations for future successes. For 
example, a third-grade educator may 
benefit from looking at not only 
third-grade standards but also fourth-, 
fifth-, and sixth-grade standards. 
Teaching children so that they are 
successful in mathematics requires that 
educators plan for not only short-term 
success but long-term success. We 
encourage educators to use the 
information shared in this article to 
attend to the importance of 
mathematics language in instruction 
and evaluate personal use of correct 
mathematics language to support 
longitudinal learning.
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